Measurement of Language Dominance in Bilingualism

David Birdsong, Department of French and Italian, UT-Austin

Backoround

Introduction

Bilinguals typically use one language more often, or are "stronger" in one language $=$ dominant in that language .

Dominance is a continuous and relative construct: bilinguals are not jus Language A (LA) - dominant, they are dominant in LA to varying degrees, vis à vis Language $B(L B)$.
"Balanced bilinguals" are dominant in neither language.

Balance does not imply high proficiency.

Dimension in Language A
(Proficiency in Language A)
FIG 1: Dominance is continuous \& relative (see $X \& Y$ axes); balanced bilinguals are dominant i neither LA nor LB (diagonal line); balanced bilingualism doesn't imply high proficiency (track from bottom left up the diagonal). [1]

Dominance is assessed by specialized instruments and is used as a predictor variable in regression.

In all the above respects, dominance in bilingualism is comparable to dominance in handedness. [2]

Assessment of dominance Dominance is assessed $w / r / t$:
\rightarrow Dimensions: naming speed, reading speed, proficiency, fluency, MLU, etc. \rightarrow Domains: use at work, with children with partner, for counting, math, etc.

Dominance indices are numerical assessments along one or more dimensions / domains.

Global dominance indices represent composite scores across multiple dimensions or domains.

Indices are derived by subtraction (score LA - score LB); or by division as ratios (score LB / score LA); or by hybrid method (subtraction \& division). https://sites.la.utexas.edu/bilingual/

Dominance indices using different methods, compared

Examples of hypothetical raw scores for LA and LB converted to dominance indices by different methods: subtraction, ratio, and hybrid [2]

$\begin{array}{\|c} \hline \text { Rav } \\ \text { Score } \\ \text { LA } \end{array}$	$\begin{array}{\|c} \hline \text { Raw } \\ \text { Score } \\ \text { LB } \\ \hline \end{array}$	SubtractionDerived Index (LA-LB)	Simple RatioDerived Index ($\mathrm{LB} \div \mathrm{LA}$)	$\begin{gathered} (\mathrm{LB} \div \mathrm{LA}) \\ * 100 \end{gathered}$	$\begin{gathered} (\mathrm{LA}-\mathrm{LB}) \div \\ (\mathrm{LA}+\mathrm{LB}) \\ * 100 \end{gathered}$
20	10	10	. 5	50	33
30	20	10	. 67	67	20
40	30	10	75	75	14
50	40	10	. 80	80	11
60	50	10	83	83	9
70	60	10	. 86	86	8
80	70	10	. 88	88	7
90	80	10	89	89	6
100	90	10	. 90	90	5

TABLE 1: This comparison of dominance indices shows an increase in absolute value of simple ratio-based indices a indices remain constant. Indices computed by the hybrid ndices remain constant. Indices computed by the hybrid method (rightmost column) decrease

$\begin{array}{\|c\|} \hline \text { Raw } \\ \text { Score } \\ \text { LA } \end{array}$	$\begin{array}{\|c\|} \hline \text { Raw } \\ \text { Score } \\ \text { LB } \\ \hline \end{array}$	Subtraction- Derived Index (LA-LB)	Simple RatioDerived Index ($\mathrm{LB} \div \mathrm{LA}$)	$\begin{gathered} (\mathrm{LB} \div \mathrm{LA}) \\ { }^{*} 100 \end{gathered}$	$\begin{gathered} (\mathrm{LA}-\mathrm{LB}) \div \\ (\mathrm{LA}+\mathrm{LB}) \\ { }^{*} 100 \end{gathered}$
20	15	5	75	75	14
32	24	8	75	75	14
40	30	10	. 75	75	14
48	36	12	. 75	75	14
60	45	15	. 75	75	14
72	54	18	75	75	14
80	60	20	75	75	14
96	72	24	. 75	75	14

TABLE 2: With a different set of increasing raw scores for LA and $L B$, this comparison of dominance indices shows that simple ratio-based and hybrid-based indices remain constant, while subtraction-based indices increase.

t			*	*	+
Raw	Raw	Subtraction-	Simple Ratio-		(LA-LB)
Score	Score	Derived Index	Derived Index	($\mathrm{LB} \div \mathrm{LA}$)	(LA +LB)
LA	LB	(LA -LB)	($\mathrm{LB} \div \mathrm{LA}$)	* 100	*100
20	10	10	. 50	50	33
30	10	20	. 33	33	50
40	10	30	25	25	60
50	10	40	20	20	67
60	10	50	. 17	17	71
70	10	60	. 14	14	75
80	10	70	. 13	13	78
90	10	80	. 11	11	80
100	10	90	. 10	10	82

TABLE 3: With another set of raw scores for LA (increasing and LB (constant), this comparison shows that as subtraction-based indices increase, simple ratio-derived indices decrease and hybrid-based indices increase.

TAKE-AWAY: When choosing a suitable method for computing dominance indices, one should compare the arithmetic outputs of various methods, and avoid any method that results in an uninformative distribution of indices over varying raw scores, e.g. subtraction in TABLE 1; ratio and hybrid in TABLE 2. NOTE: In cases where two or more indices do vary over varying raw scores (e.g. TABLE 3), those indices will inter-correlate.
NOTE: In the 2 rightmost columns of each of the 3 examples, ratio and hybrid arithmetic outputs are converted to whole numbers by multiplying by 100 .

Bilingual Language Profile

DESCRIPTION OF THE INSTRUMENT

Bilingual Language Profile (BLP) [3] is an easy-to-use, open-source, no-cost assessment instrument that yields global indices of language dominance. Supported by the Center for Open Educational Resources and Language Learning (COERLL) at the University of Texas at Austin.
Bilinguals self-assess for each of their languages, on 19 questions in four modules: Language History Language Use, Language Proficiency, and Language Attitudes.

BLP includes Dimension-based items (= skills) and Domain-based items (= use). Also, items for age of LA - LB learning, years of residence, language identity, etc. Items are equally weighted. Scoring: LA - LB learning, years of residence, language identity, etc. Items are equally weighted. Se.
(Score LA) $-($ Score $L B)=B L P$ dominance index (range +218 to -218); $0=$ perfect balance.

BLP can be administered by pencil-and-paper, or online Google form. For the latter, BLP dominance indices are calculated automatically; raw scores \& scores by module are also tabulated automatically.

BLP is available in 15 language pairings, e.g. English-Spanish / Español-Inglés. Respondents choose the language of their BLP questions.
13 different languages are represented, e.g. Arabic, Japanese, Russian, Italian, French, Basque, 13 different languages are represented, e.g. Arabic, Japanese, Russian, Italian, French, Basque,
Catalan, Samoan. Future administrators are invited to translate BLP items into still other languages.

SAMPLE

BLP
MODULE Language
Attitudes

16. a. I feel like myself when I speak English. $O=$	
b. I feel like myself when I speak Spanish.	$\square 0 \square^{1} \square^{2} \square^{3} \square^{4} \square^{5} \square^{6}$
17. a. I identity with an English-speaking culture.	$\square 0 \square_{1} \square_{2} \square_{3} \square_{4} \square_{5} \square_{6}$
b. I I Identify with a Spanish-speaking cullure.	$\square_{0} \square_{1} \square_{2} \square_{3} \square_{4} \square_{5} \square_{6}$
18. a. It is important to me to use (or eventually use) English like a native speaker.	r. $\square^{0} \square^{1} \square^{2} \square^{3} \square^{4} \square^{5} \square^{6}$
b. It is important to me to use (or eventually use) Spanish like a native speaker.	er. $\square 0 \square 1 \square 2 \square 3 \square \square 5 \square 6$
19. a. I want others to think I am a native speaker of English.	$\square 0 \square^{1} \square^{2} \square^{3} \square_{4}^{4} \square^{5} \square^{6}$
b. I want others to think I am a native speaker of Spanish.	$\square 0 \square 1 \square_{2} \square_{3} \square_{4} \square_{5} \square_{6}$

BLP SCORES PREDICT ACCENT \& LEARNING

Relative Peak Alignment Score
FIG 2: BLP dominance indices for Spanish-K'ichee' bilinguals in Guatemala predict subtle features of Spanis bilinguals in Guatemala predict subtle features of Spanish
stressed syllables; place of residence (Cantel vs. Nahualá) underspecifies degree of relative peak F_{0} alignment. [4]

FIG 3: BLP dominance indices for adult bilinguals predict statistical learning (frequencies of, and transitional probabilities between, grammatical elements) in an to balanced bilingualism on the BLP learn best. [5]

Additional information

BLP has been used for participant screening \& sorting in studies of bilingual aphasia, cross-language morphosyntactic priming, etc.

BLP components are predictive of reading comprehension in Gen.1.5 students, knowledge of clitics among early Spanish-Catalan bilinguals, etc.

(2)

BLP global raw scores for LA and LB can be converted to ratio- and hybrid-based dominance indices.

BLP by-item raw scores and modular scores used in regression along with instead of global indices.

Proposed formula for any dominance index. Adapted from [6].
$\left[\begin{array}{c}{[\text { Score LA - Score LB) / larger of the two scoress] }+1} \\ 2\end{array}\right]$
Multiplying the result by 100 yields dominance indices
ranging between 0 and 100 , with $50=$ perfect balance

Future work
Exploring dominance as a predictor of academic achievement in schools.

Using BLP to reveal longitudina dynamics of dominance relationships across the lifespan

References:

[I] Goto Butler,Y,, and Hakuta, K. (2004)."Bilingualism and scond language acquisition," in Handbook of Bilingualism, eds T. Bhatia and W. Ritchie (New York- Blackwell Publishers), II4-144.
[2] Birdsong, D. (2016). "Dominance in bilingualism: oundations of measurement, with insights from the stud, of handedness, in Language Dominance in Bilinguals: Corvalán and J.Treffers-Daller (Cambridge: Cambridge University Press), 85-105
[3] Birdsong, D., Gercken, L. M., and Amengual M. (2012). Bilingual Language Profil:An Easy-to-Use Instrument to Assess Singual Language Profile:A Easy-t-U-Usi Instrument to Asses
Bilingualism. Austin, TX: COERLL, University of Texas at Austin. Available at: https://sites.la.utexas.edu/bilinguall
[4] Baird, B. O. (2015)."Pre-nuclear peak alignment in the Spanish of Spanish-Kichee' (Mayan) bilinguals," in Proceedings of the bth Conference on Laboratory Approaches
to Romance Phonology, eds E.W.illis. . Martin to Romance Phonology, eds E. W. Wi. Lilis, P. Martín Burtagueño, and E. Herrera Zendeias (Son
Cascadilla Proceedings Project), I $63-174$.
[5] Onnis, L., Chun, W. E., and Lou-Magnuson, M. (2018). mproved statistical learning abilities in adult bilinguals.
(G)
[6] Langdon, H.W., Wiig, E.H., and Nielsen, N.P. (2005)
 ratings by bilingual
Journal, 29, $319-336$.

