3. Semantic frames as interlingual representations for multilingual lexical databases

Hans C. Boas

1. Introduction

Globalization and its effects on many areas of life requires a previously unforeseen level of detail of cross-linguistic information without which it is difficult, if not impossible, to provide accurate resources for efficient communication across language boundaries. Over the past decade, research in computational lexicography has thus focused on streamlining the creation of multilingual lexical databases in order to meet the ever-increasing demand for tools supporting human and machine translation, information retrieval, and foreign language education. However, creating multilingual lexical databases poses a number of problems that are more numerous and more complicated than those encountered in the creation of monolingual lexical databases.

One of the main problems that arises in the creation of multilingual lexical databases (henceforth MLDDs) is the development of an architecture capable of handling a wide spectrum of linguistic issues such as diverging polysemic structures (cf. Boas 2001, Viberg 2002), detailed valence information (cf. Fillmore and Atkins 2000), differences in lexicalization patterns (cf. Talmy 2000), and translation equivalents (cf. Sinclair 1996, Salkie 2002). A closely related question is whether MLDDs should employ an interlingua to map between different languages if one decides in favor of an interlingua for mapping purposes, a choice needs to be made between using an unstructured interlingua as in EuroWordNet (Vossen 36) and...

1. This paper was first published in 2005 in the International Journal of Lexicography Vol. 18.4: 445–476. I am grateful to Charles Fillmore, Collin Baker, Carlos Sobrino, Kyozi Hirose Ohara, Hans U. Boas, Jonathan Stoev, Inge De Bloois, June Thompson, and three anonymous referees for very helpful comments on the material discussed in the article.
1998, 2004), or a structured interlingua as in ULTRA (Farwell et al. 1993) or SIMULLDA (Jansen 2004).

Another problem underlying the creation of adequate MLLDs concerns the sources of information used for constructing them. Whereas most MLLDs primarily rely on machine-readable versions of existing print dictionaries, very few take advantage of the multitude of information contained in electronic corpora that have become available for increasing numbers of languages over the past decade. This paper addresses these important issues by demonstrating how the English FrameNet database (Fillmore et al. 2003a) provides a solid basis for conducting cross-linguistic research, thereby facilitating the creation of MLLDs capable of overcoming a number of important linguistic problems.

As we will see, semantic frames as well as the underlying framework of Frame Semantics (Fillmore 1982, Fillmore and Atkins 1994) have been successfully employed by a number of FrameNet-type projects for languages other than English. In these projects, semantic frames play a central role in the building and connection of lexicosyntactic fragments across languages such as English, German, Spanish, and Japanese.

The remainder of the paper is structured as follows. Section 2 describes in detail some of the cross-linguistic problems that the architecture of any MLLD needs to address. Section 3 provides a brief survey of Frame Semantics. Section 4 discusses the architecture of FrameNet, which forms the basis for the creation of parallel lexicosyntactic fragments described in Section 5. This architecture, which employs semantic frames as an interlingual representation for connecting the various lexicosyntactic fragments, differs in important ways from other types of interlingua approaches. Instead of using traditional lexical-semantic concepts such as synonymy, antonymy, and meronymy in combination with conceptual ontological information, the complementary approach proposed in this paper aims at linking parallel lexicosyntactic fragments by means of semantic frames. Section 6 compares the structure of MLLDs created on frame semantic principles with the architecture of other MLLDs. Finally, Section 7 provides a summary and gives an overview of open research questions.

2. See Atkins et al. (2002) for a recent approach to the design of multilingual lexical entries within the ISLE framework.
2. Linguistic problems for multilingual lexical databases

2.1. Polysemy

Whereas polysemy is seldom a serious problem in human communication, lexicographers have traditionally been concerned with how to best account for the fact that one word can carry several different meanings (cf. Leacock and Ravin 2000). Over time, lexicographic procedures have been established that have resulted in the listing of multiple dictionary senses for polysemous words where sub-senses are grouped together with their respective definitions (cf. Bejoint 2000: 227–234). However, dictionaries often vary in their organization of word senses, which makes it difficult to compare definitions across different dictionaries (cf. Atkins 1994, Goddard 2000). For example, in their discussion of the web risk, Fillmore and Atkins (1994) compare the definitions found in two different print dictionaries and come to the conclusion that "all the dictionaries agree on the clear stand-alone existence of Sense 1 (risk your life), but cannot agree on Sense 2 (risk falling in love) and Sense 3 (risk climbing the cliff)" (Fillmore and Atkins 1994: 353).

Looking beyond the well-known issues surrounding the treatment of polysemy in a single language, we find even greater problems when it comes to accounting for polysemy across languages. Overcoming these problems is not only important for the design of traditional lexicons, but also crucial for the successful implementation of MLLDs. In other words, without a satisfactory account of cross-linguistic polysemy, it is difficult, if not impossible, to construct adequate MLLDs. For example, Altenberg and Granget (2002) distinguish between three different types of cross-linguistic polysemy patterns that can be located along a continuum, where complete overlap of word senses is on one end of the continuum, and no correspondence among word senses across languages is found at the other end of the continuum. On one end of the continuum we find "overlapping polysemy" which refers to cases in which items in two languages have roughly the same meaning extensions (Altenberg and Granget 2002: 22).

An example of overlapping polysemy is provided by Alina and DeCearis’ (2002) comparison of the adjective cold with its Spanish and Catalan counterparts fio and fred. The authors discuss the varying degrees of polysemy exhibited by the three adjectives and come to the conclusion that the three adjectives exhibit "almost complete" overlapping polysemy patterns. Overlapping polysemy poses relatively few problems for multilingual dictionaries, but it is unfortunately very rare.
62 Hans C. Boas

In contrast, diverging polysemy structures are very common. In their contrastive study of English to crawl and French ramper, Fillmore and Atkins (2000) demonstrate that the two verbs exhibit semantic overlap when it comes to the basic senses describing “the primary motion of insects and invertebrates, and the deliberate crouching movement of humans” (2000: 104). However, they differ widely in their meaning extensions when it comes to more specialized senses. For example, whereas English crawl can be used to describe slow-moving vehicles, French requires rrawler au pas (literally: move at a walking pace, or slowly) instead of ramper. Similarly, whereas crawl exhibits a meaning extension describing “creature teeming” (You get little brown insects crawling about all over you. (2000: 96)), French requires grolleur instead of ramper to express the same concept (Fillmore and Atkins 2000: 107). Examples such as these show that adequate MLLDs must not only take into consideration the multitude of different senses of words across languages, but also have to include effective mechanisms that allow for the linking of extended word senses in diverging polysemy patterns. 3

The third type of cross-linguistic phenomenon posing problems for MLLDs are cases in which there are no clear equivalents in the target language. As Altenberg and Granger (2002: 25) point out, these cases may lead to two types of problems: “either the lack of a clear translation equivalent in the target language results in a large number of zero-translations, indicating that the translators find it necessary to render the source term in some way but, in the absence of a single prototypical equivalent, vary their renderings according to context.” However problematic it may be to find proper equivalents for “difficult” lexical items cross-linguistically, it is necessary to account for them within MLLDs. Without their inclusion, neither humans nor machines will be able to successfully employ MLLDs for translation purposes. With this brief overview of problems surrounding cross-linguistic polysemic patterns, we now turn to another linguistic issue that needs to be accounted for when designing MLLDs, namely the accuracy of syntactic and semantic valence patterns.

3. For examples of diverging polysemic patterns among nouns, see Svensen (1993) on wood and forest and their French and German equivalents. See Chudikiewicz et al. (2003: 264) on the various meanings of proceedings and their French equivalents.
2.2. Syntactic and semantic valence patterns

Besides providing information about a word's different senses, any MLLD should provide detailed syntactic information illustrating the various ways in which meanings can be realized. To illustrate, consider the following examples.

1. a. The mother cured the child.
 b. The mother cured the measles.
 c. The mother cured (the child/the measles) with pills.

2. a. The mother cured the ham.
 b. The mother cured the ham with hickory smoke.

3. a. [NP V NP]
 b. [NP V NP PP with]

The sentences in (1) exemplify some of the syntactic valence patterns associated with one sense of to care, namely the healing sense. In contrast, the examples in (2) illustrate some of the syntactic valence patterns found with the preserving food sense of care. The syntactic frames in (3) summarize the syntactic commonalities among the two different senses of care.

That is, whereas the syntactic frame in (3a) represents the valence pattern exhibited by (1a), (1b), and (2a), the syntactic frame in (3b) summarizes the valence patterns of (1c) and (2b). From the perspective of a human user the information in (1)-(3) is readily interpretable because humans have already stored the representation that makes the link between the underlying meaning of the senses and their different syntactic realizations.

However, NLP-applications face a much harder task when trying to identify the different meanings of care because they are typically trying to establish the meanings based on syntactic information of the type in (3) alone. That is, without having access to information about the different semantic types of Noun Phrases or Prepositional Phrases that may occur with the different senses in postverbal position, it is difficult to decide what sense of care is expressed. This example illustrates that lexical databases should contain adequate information not only about a word's different senses, but also how a single sense of a word may be realized in different ways at the syntactic level.\(^4\)

4. Note that resources such as WordNet (cf. Fellbaum 1998) provide important information that can be used to determine a word's semantic type of complements.
Similar issues arise in multilingual environments. Discussing the various Swedish counterparts for get, Viberg (2002: 139) reviews the "large number of senses which are both lexical and grammatical." As Table 1 shows, the multitude of syntactic frames associated with get are relevant for the identification of the appropriate sense.

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Frame</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possession</td>
<td>get + NP</td>
<td>Peter got a book</td>
</tr>
<tr>
<td>have + get + NP</td>
<td></td>
<td>Peter has got a book</td>
</tr>
<tr>
<td>Modal/Obligation</td>
<td>have to + VP intransitive</td>
<td>Peter has got to come</td>
</tr>
<tr>
<td>Inchoative</td>
<td>get + ADJ/Participle</td>
<td>Peter got angry</td>
</tr>
<tr>
<td>Passive</td>
<td>get + PastPart (by NP)</td>
<td>Peter got killed (by a gunman)</td>
</tr>
<tr>
<td>Causative Motion</td>
<td>get + NP + to VP intransitive</td>
<td>Peter got Harry to leave</td>
</tr>
<tr>
<td>Subject-centered</td>
<td>get + Participle</td>
<td>Peter got up/in/out...</td>
</tr>
<tr>
<td>Object-centered</td>
<td>get + PP</td>
<td>Peter got to Berlin</td>
</tr>
<tr>
<td></td>
<td>get + NP + PP</td>
<td>Peter got the buns out of the oven</td>
</tr>
</tbody>
</table>

Similar to our discussion of care above, it is clear that any lexical database must contain fine-grained valence information of the kind contained in Table 1 in order to successfully identify the different senses of get. At the next step, MLLDs should also provide information about translation equivalents in other languages. Table 2 lists the most frequent Swedish equivalents of get.

<table>
<thead>
<tr>
<th>Possession</th>
<th>Motion</th>
<th>Inchoative</th>
</tr>
</thead>
<tbody>
<tr>
<td>få</td>
<td>'get'</td>
<td>'become'</td>
</tr>
<tr>
<td>ha</td>
<td>'have'</td>
<td>'go'</td>
</tr>
<tr>
<td>ta</td>
<td>'take'</td>
<td>'step'</td>
</tr>
<tr>
<td>ge</td>
<td>'give'</td>
<td>'stride'</td>
</tr>
<tr>
<td>skaffa</td>
<td>'acquire'</td>
<td>'rise'</td>
</tr>
<tr>
<td>knäcka</td>
<td>'finish'</td>
<td></td>
</tr>
</tbody>
</table>
The Swedish data demonstrate that the identification of Swedish equivalents of got require detailed information about the specific sense of got in English source texts. Any MLLD aimed at providing useful information for humans and machines will therefore have to include detailed syntactic and semantic valence information showing how to map specific sub-senses of a word from one language into another language. The following section discusses a related problem, namely different types of lexicalization patterns across languages.

2.3. Differences in lexicalization patterns

As Talmy (1985, 2000) points out, languages show strong preferences as to what kinds of semantic components they lexicalize. This property, in turn, has a number of important implications for the design of MLLDs. For example, Japanese motion verbs differ from English motion verbs in how they realize various types of paths (Ohara et al. 2004). The verbs *waitaru* (‘go across’) and *koea* (‘go beyond, go over’) ‘describe motion in terms of the shape of the path traversed by the theme that moves’ (Ohara et al. 2004: 10). As examples (4a) and (4b) show, *waitaru* (‘go across’) is used with an accusative-marked direct object NP describing a path. Ohara et al. point out that *kawa* (‘river’), in (4a), ‘denotes an area that lies between two points in space’, whereas *koe* (‘bridge’) ‘refers to a medium or a passage that is constructed between the two points.’

(4) a. nanminga *kawa* o *watatta*
refugees NOM river ACC went.across

‘The refugees went across (crawled, traversed) the river.’

b. nanminga *kawa* o *watatta*
refugees NOM river ACC went.across

‘The refugees crossed the bridge.’ (Ohara et al. 2004: 10)

Differences arise when we look at semantically related verbs such as *koea* (‘go beyond’) which takes an accusative marked direct object NP such as *kawa* (‘river’) in (5a). However, *koea* does not allow *koe* (‘bridge’) as its direct object as is illustrated by (5b).

(5) a. nanminga *kawa* o *koea*
refugees NOM river ACC went.beyond

‘The refugees went beyond (passed) the river.’
According to Ohara et al. (2004), the differences between these verbs illustrate the necessity to identify and include in lexical descriptions the subcategories of different types of paths that can occur with motion verbs in Japanese. They point out that *wataru* ('go across') may be described as taking an accusative-marked route, while *kōru* ('go beyond') may be characterized as taking an accusative-marked boundary as the direct object (2004: 10). These examples demonstrate that Japanese makes a more fine-grained distinction between different types of path expressions than English. In other words, whereas in English the type of path is typically unimportant in terms of lexical selection, Japanese verbs exhibit a larger variety of lexicalization patterns with respect to path expressions.

While these systematic differences in lexicalization patterns pose relatively few problems to bilingual speakers, it is far from clear as to how these differences between languages should be encoded in MLLDs. That is, in order to successfully ‘mirror the expertise of bilingual humans’ (S Ritchie 1996: 174), it is first necessary to determine how to systematically account for differences in lexicalization patterns in the design of MLLDs. We return to this issue in Section 5.

2.4. Measuring paraphrase relations and translation equivalents

Another linguistic problem requiring attention in the design of MLLDs concerns two related issues, namely dealing with paraphrase relations and measuring translation equivalents across languages. When accounting for paraphrase relations, lexical databases should include information about the fact that certain words and multi-word expressions are paraphrases of each other, i.e., they may be substituted for each other and still express the same meaning. Compare the following examples.

(6) Jana argued with Inge about the theory.

(7) Jana had an argument with Inge about the theory.

5. For a discussion of different lexicalization patterns posing similar types of problems, see Tamry (1985) for motion verbs in English and Asuagón, and Subirats & Perullà (2003) for emotion verbs in English and Spanish.
Both sentences express the same type of situation. However, the two examples differ in how the situation is expressed syntactically. In (6) it is the verb *argue* which takes *Jana* as a subject, and with *Inge* and *about the theory* as prepositional complements. In (7), it is the multi word expression *to have an argument*, which occurs with *Jana* as its subject, and with *Inge* and *about the theory* as its prepositional complements. This example shows that the number of words evoking a given meaning may differ across sentences. Any lexical database that is used for translation purposes must not only take into account paraphrase relations within a single language, but it should also include a description of how to map such paraphrases cross-linguistically.

In other words, when it comes to translation equivalents, the question is not only how to "measure" them cross-linguistically, but also how to match them from different paraphrases in the source language to different types of paraphrases in the target language. Consider the following examples from German, which are translation equivalents of (6) and (7).

(8) a. Jana stritt mit Inge über die Theorie.
 Jana argued with Inge about the theory.
 Jana argued with Inge about the theory.
 Jana argued self with Inge about the theory
 Jana argued with Inge about the theory.

b. Jana stritt sich mit Inge über die Theorie.
 Jana had an argument with Inge about the theory.
 Jana had an argument with Inge about the theory.
 Jana had an argument with Inge about the theory.

In (8a) and (8b), we find the verb *strennen* ('to argue') and its counterpart *streiten* ('to argue'), respectively. In this context, there is no obvious difference in meaning that would be caused by choosing one verb over the other. Similarly, the multi word expression *einen Streit haben mit* ('to have an argument with') in (8) expresses the same type of situation as the sentences in (8). These three sentences are important because they exemplify the difficulty of identifying paraphrase relations within one language, and translation equivalents across languages. In contrast to bilingual...

6. An anonymous reviewer points out that another way of capturing such paraphrase relations would be to apply Milet’s Meaning-Text Theory (Milet et al. 1988) and its Explanatory Combinatory Dictionaries. On this view, a
human speakers, who possess what Chesterton (1998: 39) calls translation competence ("the ability to relate two things"), multi-lingual NLP applications have to rely on MLLODs to store information about translation equivalents. Without the inclusiveness of paraphrase relations and the different numbers and combinations of word senses across languages it will be difficult to solve problems such as those discussed above. With this overview, we now turn to a discussion of Frame Semantics and the structure of the English FrameNet database. In Section 5, we return to the linguistic issues discussed in this section and demonstrate how they can be tackled by MLLODs that employ semantic frames as an interlingua.

3. Frame Semantics

Frame Semantics, as developed by Fillmore and his associates over the past three decades (Fillmore 1970, 1975, 1982, Fillmore and Atkins 1992, 1994, 2000), is a semantic theory that refers to semantic "frames" as a common background of knowledge against which the meanings of words are interpreted (cf. Fillmore and Atkins 1992: 76-77). An example is the Compliance frame, which involves several semantically related words such as adhere, adherence, comply, compliant, and violate, among many others (Johnson et al. 2003). The Compliance frame represents a kind of situation in which different types of relationships hold between so-called "Frame Elements" (FEs), which are defined as situation-specific semantic roles.

This frame concerns acts of - and states of affairs for which -

lexical function is a meaning relation between a keyword and other words or phraseological combinations of words. Using paraphrase mechanisms, we can link such paraphrases as stress and other verbal habits (cf. (8) and (9)) with lexical functions:

\[\text{V(Argument)} = \text{argue} \]
\[\text{Open(Argument)} = \text{have} \]

7. For a detailed overview of Frame Semantics, see Przunz (1996).

8. Names of Frame Elements (FEs) are capitalized. Frame Elements differ from traditional universal semantic (or thematic) roles such as Agent or Patient in that they are specific to the frame in which they are used to describe participants in certain types of scenarios. "Tgr" stands for target word, which is the word that evokes the semantic frame.
TAGONISTS are responsible and which violate some NORMS. The FE ACT identifies the act that is judged to be in or out of compliance with the norms. The FE NORM identifies the rules or NORMS that ought to guide a person's behavior. The FE PROTAGONIST refers to the person whose behavior is in or out of compliance with norms. Finally, the FE STATE OF AFFAIRS refers to the situation that may violate a law or rule (see Johnson et al. 2003).

With the frame as a semantic structuring device, it becomes possible to describe how different FEs are realized syntactically by different parts of speech. The unit of description in Frame Semantics is the lexical unit (hereforth LU), which stands for a word in one of its senses (cf. Cruse 1986). Consider the following sentences in which the LUs (the targets) adhere, compliance, compliant, follow, and violation evoke the Compliance frame. FEs are marked in square brackets, their respective names are given in subscript.9

(10) [-Protagonist: Women] take more time, talk easily and still adhere\(^{10}\)
 [-Norms to the strict rules of manners].

(11) It is also likely to improve [-Protagonist: patient] compliance\(^{11}\)
 [-Norms in taking the daily quota of bile acid].

(12) [-Protagonist: Patients] were\(^{12}\) [-Adv:compliance\(^{13}\)]
 [-Norms with their assigned treatments].

(13) So now the Commission and other countryside conservation
 groups, have produced [-Norms: a series of guidelines]
 [-Protagonist: for the private landowners] to follow\(^{14}\).

(14) [-Adv: Using a couple of munitions for private imperatives was\(^{15}\) a
 [-Protagonist: serious] violation\(^{16}\) [-Norms: of property rights].

The examples show that FEs may occur in different syntactic positions, and that they may fulfill different types of grammatical functions (subject, object, etc.). One of the major advantages of describing LUs in frame semantic terms is that it allows the lexicogapher to use the same underlying semantic frame to describe different words belonging to different parts of speech. The design of the FrameNet database, to which we now turn, is influenced by and structured along frame-semantic principles.

9 Support verbs (Supp) such as or be or to take do not, introduce any particular semantics of their own. Instead, they create a verbal predicate "allowing arguments of the verb to serve" as frame elements of the frame evoked by the noun". (Johnson et al. 2003)
4. FrameNet

The FrameNet database developed at the International Computer Science Institute in Berkeley, California, is an on-line lexicon of English lexical units (LUs) described in terms of Frame Semantics. Between 1997 and 2003, the FrameNet team collected and analyzed lexical descriptions for more than 7,000 LUs based on more than 130,000 annotated corpus sentences (Baker et al. 1998, Fillmore et al. 2003a). The process underlying the creation of lexical entries in FrameNet involves several steps. First, frame descriptions for the words or word families targeted for analysis are devised. This procedure consists roughly of the following phases:

1. Characterizing schematically the kind of entity or situation represented by the frame, (2) choosing memonemics for labeling the entities or components of the frame, and (3) constructing a working list of words that appear to belong to the frame, where membership in the same frame will mean that the phrases that contain the LUs will all permit comparable semantic analyses. (Fillmore et al. 2003b: 297)

The second step in the FrameNet workflow concentrates on identifying corpus sentences in the British National Corpus exhibiting typical uses of the target words is specific frames. Next, these corpus sentences are extracted mechanically and annotated manually by tagging the Frame Elements realized in them. Finally, lexical entries are automatically prepared and stored in the database. An important feature of the FrameNet workflow is that it is not completely linear. That is, at each stage of the workflow, FrameNet lexicographers may discover new corpus data that might force them to re-write frame descriptions because of the need to include or exclude certain LUs in the frame. Similarly, if frames are found to include LUs whose semantics are too divergent, frames have to be "re-framed" (see Petrucc et al. 2004), i.e., they have to be split up into separate frames (for a full overview of the FrameNet process, see Fillmore et al. 2003a) and Fillmore et al. (2003b).

The FrameNet database (http://framenet.icsi.berkeley.edu) offers a wealth of semantic and syntactic information for several thousand English verbs, nouns, and adjectives. Each lexical entry in FrameNet is structured as follows: It provides a link to the definition of the frame to which the LU belongs, including FE definitions, example sentences exemplifying prototypical instances of FEs (For more information on the structure of the FrameNet database, please see Baker et al. (2003)). In addition, it offers information about various frame-to-frame relations (e.g., child-
parent relation and sub-frame relation (see Fillmore et al. 2003b and Petru et al. 2004) and includes a list of LUs that evoke the frame.

The central component of a lexical entry in FrameNet consists of three parts. The first provides the Frame Element Table (a list of all FEs found within the frame) and corresponding annotated corpus sentences demon-

strating how FEs are realized syntactically (see Fillmore et al. 2003b). In

this part, words or phrases instantiating certain FEs in the annotated

corpus sentences are highlighted with the same color as the FEs in the

FE table above them. This type of display allows users to identify the vari-

eity of different FE instantiations across a broad spectrum of words and

phrases. The Realization Table is the second part of a FrameNet entry.

Besides providing a dictionary definition of the relevant LU, it summa-

rizes the different syntactic realizations of the frame elements. The third

part of the Lexical Entry Report summarizes the valence patterns found

with a LU, that is, "the various combinations of frame elements and their

syntactic realizations which might be present in a given sentence" (Fill-

more et al. 2003a: 330). As the first row in the valence table for complex

in Figure 1 shows, the FE noun may be realized in terms of two different

types of external arguments: either as an external noun phrase argument,

or as a prepositional phrase headed by with. Clicking on the link in the

column to the left of the valence patterns leads the user to a display of

annotated example sentences illustrating the valence pattern.18

Accessing the Lexical Entry Report for a given LU not only allows the

user to get detailed information about its syntactic and semantic distribu-

tion. It also facilitates a comparison of the comprehensive lexical descrip-

tions and their manually annotated corpus-based example sentences with

those of other LUs (also of other parts of speech) belonging to the same

frame. Another advantage of the FrameNet architecture lies in the way

lexical descriptions are related to each other in terms of amorphic frames.

Using detailed semantic frames which capture the full background knowl-

dge that is evoked by all LUs of that frame makes it possible to sys-

19. Frame Elements which are conceptually salient but do not occur as overt lex-

ical or phrasal material are marked as null instantiations. There are three dif-

ferent types of null instantiation: Constructed Null Instantiation (CNI),

Definite Null Instantiation (DNI), and Indefinite Null Instantiation (INI).
around highly specific semantic frames capturing the background knowledge necessary to understand the meaning of LUs. By employing semantic frames as structuring devices, FrameNet thus differs from other approaches to lexical description (e.g. U-TRA (Farwell et al. 1993), WordNet (Fillmore 1998), or SIMedLDA (Ijsselsteijn 2004)) in that it makes use of independent organizational units that are larger than words, i.e., semantic frames (see also Ohara et al. 2003, Boas 2005). In the following sections I show how the inventory of semantic frames can be utilized for the construction of MLLDs. Drawing on data from Spanish, Japanese, and German I demonstrate the individual steps necessary for the construction of parallel FrameNets.

![FrameNet entry for comply, Valence Table](image.png)

5. Using semantic frames for creating multilingual lexicon fragments

5.1. Producing FrameNet-type descriptions for other languages

In order to construct a non-English FrameNet, we first download the English FrameNet MySQL database (see Baker et al. 2003 for a detailed description of the FN database structure). Next, all English-specific information is removed from the language-specific database tables. This includes, for example, all information about Lexical Units in the top left.
part of the original FrameNet database tables in Figure 2 (e.g. lemma, Part of Speech, Lexeme, Lexeme Entry, Word Form), as well as all information relating to annotated corpus example sentences in the lower left part of the original FrameNet database tables in Figure 2 (e.g. Corpus, Sub-corpus, Document, Genre, Paragraph).

Once all English-specific information is removed, only information not specific to English remains in the database tables. This includes conceptual information in the upper right of the FrameNet database diagram in Figure 2, such as the Frames table, the FrameRelation table, the FERelation table, the FrameElements table, among other information. Once the FrameNet database has been stripped of its English-specific lexical descriptions and accompanying information, work begins on the second stage, namely re-populating the database with non-English lexical descriptions.

The first step consists of choosing a semantic frame from the stripped-down original database. For example, one might choose the Communication_response frame, which deals with communicating a reply or response to some prior communication or action (Johnson et al. 2003). English LLUs belonging to this frame include the verbs to answer, to counter, and to reject, as well as the nouns answer, response, and reply, among others. In the FrameNet database we learn from the FrameElements table that this frame contains the FEs addresser, message, speaker, topic, and trigger.

The second step in re-populating the database to arrive at a full-featured non-English FrameNet is to identify, with the help of dictionaries and parallel corpora lists of LLUs in other languages that evoke the same semantic frame. This process is similar to the initial stages of English FrameNet (see Fillmore et al. 2003a), except for the fact that it is easier to compile lists of LLUs because one already has access to existing frame descriptions and frame relations. Our compilation of LLUs for the Communication_response frame yields a list that includes German verbs and nouns such as beantworten (‘to answer’), ausreden (‘to reply’), and

11. The availability of a stripped-down FN database with existing frames and FEIs means that non-English FrameNet do not have to go through the entire process of frame creation (Fillmore et al. 2003: 304–313). It is important to keep in mind that at present FrameNet covers about 8000 lexical units in more than 600 frames. This means that its coverage of the English lexicon is somewhat limited when compared with other resources such as WordNet. Similarly, FrameNet for other languages will exhibit comparable limitations until FrameNet covers much larger areas of the English lexicon (or, even full coverage).
wort (‘answer’), and die Engegangen (‘reply’). For Japanese, we find verbs such as ake-kotae saru (‘to answer’) and otsuo saru (‘to reply’) and nouns such as kotae (‘answer’), which evoke the communication response frame. Similarly, in Spanish we find verbs such as dementir (‘deny’) and responder (‘to respond’) and nouns such as respuesta (‘response’).

At this point it is necessary to briefly mention some similarities and differences among soft-English FrameNets. Between the Spanish, Japanese, and German FrameNets there are differences in software setup and data sources used. Whereas Spanish FrameNet uses all of the original English FrameNet software (and has compiled its own corpus) (see Subirats and Petrucc 2003), Japanese FrameNet is developing its own set of software tools to augment the tools provided by English FrameNet (see Ohara et al. 2003). There are two projects concerned with developing FrameNet-type descriptions for German. The SALSA project at the University of the Saarland (Saarbrücken, Germany) (Erk et al. 2003) has developed its own annotation software and set of tools to annotate the entire TIGER corpus (König and Lezín 2003) with semantic frames. Its goal is to apply English-based frames to the TIGER corpus data, inventing new frames where necessary. In contrast, German FrameNet (Bos 2002) currently under construction at the University of Texas at Austin, is adapting the original FrameNet tools and aims to provide parallel lexical entries that are comparable in breadth and depth to those of English FrameNet. Another project, BitFrameNet (Fung and Chen 2004) focuses on the lexical description of Chinese and English for machine translation purposes.

It differs from other FrameNets in that it takes a statistically-based approach to producing bilingual lexicon fragments.

To illustrate the process by which the stripped-down FrameNet database is repopulated with non-English data, the remainder of this section focuses primarily on the workflow of the Spanish FrameNet project (Subirats and Petrucc 2003). 12 Once the appropriate lists of LUs evoking the frame are compiled for Spanish, they are added to the database using FrameNet’s Lexical Unit Editor (cf. Fillmore et al. 2003b: 313–315). More specifically, for each LU information is stored about “(1) its name, 12. Spanish FrameNet currently contains about 80 annotated frames (with about 480 lexical units) as well as 500 frames that have not yet been annotated. Currently, SALSA has annotated approximately 540 lexical units, totaling more than 25,000 verb instances in the TIGER corpus. As both Japanese FrameNet and German FrameNet are currently in their beginning stages, no data have yet been made public.
(2) its part of speech, (3) its meaning, and (4) information about its formal composition" (Fillmore et al. 2003: 313). After adding all of the relevant information about each LU belonging to a frame to the database, a search is conducted in a very large corpus in order find sentences that illustrate the use of each of the LUs in the frame. This approach is parallel to the procedure employed by the original Berkeley FrameNet. Spanish FrameNet uses a 300 million-word corpus, which includes a variety of both New World and European Spanish texts from different genres such as newspapers, book reviews, and humanities essays (Subirats and Petrucc 2003).

To search the corpus and to create different subcorpora of sentences for annotation, the Spanish FrameNet project employs the Corpus Workbench software from the Institut für Maschinelle Sprachverarbeitung ("Institute for Natural Language Processing") at the University of Stuttgart (Christ 1994). Using an electronic dictionary of 600,000 word forms and a set of deterministic automata, a number of automatic processes select relevant example sentences from the corpus and subsequently compile subcorpora for each syntactic frame with which an LU may occur (cf. Subirats and Ortega 2000 and Ortega 2002). As in the creation of the original FrameNet, the subcorpora are then manually annotated with frame semantic information in order to arrive at clear example sentences illustrating all the different ways in which frame elements are realized syntactically. For annotation and database creation, Spanish FrameNet (SFN) employs the software developed by the original Berkeley FrameNet project. Figure 3 illustrates how the FrameNet Desktop Software is used by SFN to annotate part of an example sentence in the Communication_response frame.

Figure 3. Annotation of a Spanish sentence in the Communication_response frame (Subirats and Petrucc 2003)

The top line shows the example sentence La respuesta positiva de los trabajadores al acuerdo con la target zona respuesta ("response"), which evokes the Communication_response frame. Underneath the top line are three separate layers, one each for information pertaining to frame element names (FE), grammatical functions (GF), and phrase types (PT).

After having become familiar with the frame and frame element defini-
tions, annotators mark whole constituents with the appropriate colored
tags representing the different frame elements of the Communication
response frame. In Figure 3, positivo ("positive") is tagged with the FE
MESSAGE, de los trabajadores ("by the workers") is tagged with the FE
SPEAKER, and en acuerdo ("to the second") is marked with the FE TRIGGER.
Once example sentences are marked with semantic tags, syntactic informa-
tion about grammatical functions (GF) and phrase types (FT) is added
semi-automatically and hand-corrected if necessary. Figure 4 shows only
a small part of the software used for semantic annotation by members of
the Spanish FrameNet team. Recall that manual semantic annotation
covers the full range of examples of sentences illustrating each possible
syntactic configuration in which a lexical item may occur. As such, Figure
4 gives a more complete illustration of the FrameNetDesktop Annotator
software graphical user interface.

![FrameNet Desktop Annotator](image)

Figure 4. Annotation of a Spanish sentence using the FrameNet Annotator
(Subcots and Petreek 2001)

The FrameNet Annotator window is divided into four main parts. The
left part is the navigation frame that allows annotators to directly access
all frames as well as their respective frame elements and lexical units con-
tained in the MySQL database. The navigation frame shows different com-

munication frames (Communication_manner and Communication_noise among others), where Communication_response is high-
lighted by an annotator to reveal the frame's FEs (ADDRESSEE, MEDIUM, and SPEAKER, among others). Clicking on a frame name reveals a list of LUs evoking the frame, in this case desmentir (‘deny’) and respuesta (‘response’) with their corresponding subcorpora containing example sen-
tences previously extracted from the 300 million-word corpus (Subb-rats and Petruck 2003).

Selecting a lexical unit’s subcorpus displays its respective example sen-
tences in the top right part of the FrameNet Annotator window, in this case three example sentences with the target noun respuesta, which is high-
lighted in black. Clicking on one of the corpus sentences allows annotators to view it with the full set of layers in the middle part on the right of the Annotator window (see also Figure 5). The fourth part on the bottom right of the Annotator window displays the content space with the spec-
cifications for the different frame elements of the Communication_ Response frame.13

Using the Annotator tool, members of the Spanish FrameNet team annotate a set of relevant corpus sentences in each subcorpus (see descrip-
tion above), thereby arriving at an extensive set of annotated subcorpora for each LU. As with the original FrameNet, the resulting annotated sen-
tences represent an exhaustive list of the ways in which frame elements may be realized syntactically with a given target word. Once annotation is completed, the lexical units are scored with their annotated example sen-
tences in the FrameNet MySQL database, which at the end of the work-
flow described in this section has evolved from a FrameNet database whose tables have been stripped of all of their English-specific data into a corresponding Spanish FrameNet database. Thus, Spanish FrameNet is comparable in structure with that of the original English FrameNet database in that it contains the same set of frames and frame relations that differ from English FrameNet in that the entries for argument taking nouns, verbs, and adjectives are in Spanish. Users may access the Spanish FrameNet database by the same set of web-based reports as for the origi-
nal English FrameNet, i.e., for each LU in the database it is possible to display an Annotation Report, a Lexical Entry Report, and the corre-
sponding valence tables. With this overview in mind, we now look at

13. Frame Elements are automatically annotated with grammatical function (GF) and phrase type (PT) information.
how semantic frames may be used to connect parallel lexicon fragments. More specifically, I show that the frame-semantic approach to MLLDs overcomes many of the problems faced by other MLLDs discussed in Section 2.

5.2. Linking parallel lexicon fragments via semantic frames

With FrameNets for multiple languages in place, the next step towards the creation of MLLDs on frame-semantic principles consists of linking the parallel lexicon fragments via semantic frames in order to be able to map lexical information of frame-evoking words from one language to another language (see also Heid and Krüger 1996, Foucart et al. 2000, Boas 2002).

Since the MySQL databases representing each of the non-English FrameNets are similar in structure to the English MySQL database in that they share the same type of conceptual backbone (i.e., the semantic frames and frame relations), this step involves determining which English lexical units are equivalent to corresponding non-English lexical units.

Table 3. Partial Realization Table for the verb answer

<table>
<thead>
<tr>
<th>FE Name</th>
<th>Syntactic Realizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker</td>
<td>NP, Ext, PP by Comp, CNI</td>
</tr>
<tr>
<td>Message</td>
<td>INI, NPObj, PP with Comp, QUO, Comp, Sln, Comp</td>
</tr>
<tr>
<td>Address</td>
<td>DNI</td>
</tr>
<tr>
<td>Definite</td>
<td>PP, with Comp</td>
</tr>
<tr>
<td>Manner</td>
<td>AVP, Comp, PPing without Comp</td>
</tr>
<tr>
<td>Means</td>
<td>PPing by Comp</td>
</tr>
<tr>
<td>Median</td>
<td>PP by Comp, PP in Comp, PP over Comp</td>
</tr>
<tr>
<td>Trigger</td>
<td>NP, Ext, DNI, NP, Obj, Swh, Comp</td>
</tr>
</tbody>
</table>

To exemplify, consider the Communication response frame discussed in the previous section. Suppose this frame, along with its frame elements and frame relations is contained in multiple FrameNets, where each individual database contains language-specific entries for all of the lexical units that evoke the frame in that language. Once we identify with the help of bilingual dictionaries a lexical unit whose entry we want to connect to a corresponding lexical unit in another language, we have to carefully consider the full range of valence patterns. This is a rather lengthy and complicated process because it is necessary that the different
syntactic frames associated with the two lexical units represent translation equivalents in context. This procedure is facilitated by the use of parallel-aligned corpora, which allow a comparison between the LUs when they are embedded in different types of context (see, e.g. Wu 2000, Sultie 2002). Consider, for example, the verb answer, whose individual frame elements may be realized syntactically in many different ways. The realization table (in Table 3) is an excerpt from the FrameNet lexical entry for answer, which contains an excerpt from the valence tables as well as the corresponding annotated corpus sentences. The column on the left contains the names of Frame Elements belonging to the Communication_Response frame, the column on the right lists their different types of syntactic realizations. For example, the FE SPEAKER may be realized either as an external noun phrase or a prepositional phrase complement headed by by. Alternatively, the FE SPEAKER does not have to be realized at all as in imperative sentences such as Never answer this question with a straight no.

<table>
<thead>
<tr>
<th>Speaker</th>
<th>TARGET</th>
<th>Message</th>
<th>Trigger</th>
<th>Addressers</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. NP,Ext</td>
<td>answer.v</td>
<td>NP,Obj</td>
<td>DNI</td>
<td>DNI</td>
</tr>
<tr>
<td>b. NP,Ext</td>
<td>answer.v</td>
<td>PP,with,Comp</td>
<td>DNI</td>
<td>DNI</td>
</tr>
<tr>
<td>c. NP,Ext</td>
<td>answer.v</td>
<td>QUO,Comp</td>
<td>DNI</td>
<td>DNI</td>
</tr>
<tr>
<td>d. NP,Ext</td>
<td>answer.v</td>
<td>Sfn,Comp</td>
<td>DNI</td>
<td>DNI</td>
</tr>
</tbody>
</table>

Recall from Section 4 that each lexical entry also gives a full valence table illustrating the various combinations of frame elements and their syntactic realizations, which might be present in a given sentence. The valence table for the verb answer lists a total of 22 different linear sequences of Frame Elements, totaling 32 different combinations in which these sequences may be realized syntactically. As the full valence table for answer is rather long, we focus on only one linear sequence of Frame Elements.

14. We are currently looking into the possibility of automating this process by using a script that matches non-English examples expressing a specific constellation of FE s with their corresponding English examples expressing the same constellation of FE s.

15. We focus on verbs here, but similar procedures are followed for nouns and adjectives.
Elements, namely the one in which the FE speaker is followed by the
target LU answer and the FE message. The annotated example sentences
in (15) correspond to the valence table excerpt in Table 4.

(15) a. Every time [Speaker] you [answer]15 [Message] no, I shall adorn
you with these pegs. [trigger] DNI [Addresser] DNI
b. [Speaker] She [answer]16 [Message] with another question.
[c] [Speaker] He [answer]17 [Message] This beer is expensive
[Trigger] DNI [Addresser] DNI
d. [Speaker] He [answer]18 [Message] that he had gone too far
now and that the country expected a dissolution.
[Trigger] DNI [Addresser] DNI
Table 4 is an excerpt from the full valence table for the verb answer and
shows how one of the 22 different linear sequences of FEs may be realized
in four different ways at the syntactic level. That is, besides sharing the
same linear order of Frame Elements with respect to the position of the
target LU answer, all four valence patterns have the FE speaker realized
as an external noun phrase, and the FE’s trigger and addressee not real-
ized overtly at the syntactic level, but null instantiated as Definite Null In-
stantiation (DNI). In other words, in sentence such as He answered with
another question the FE’s trigger and addressee are understood in con-
text although they are not realized syntactically.

With both the language-specific as well as the language-independent
conceptual frame information in place, we are now in a position to link
this part of the lexical entry for answer to its counterparts in other lan-
guages. Taking a look at the lexical entry of respond (to answer) pro-
vided by Spanish FrameNet, we find a list of Frame Elements and their
syntactic realizations that is comparable in structure to that of its English
counterpart in Table 4.

Spanish FrameNet also offers a valence table that includes for respon-
der a total of 23 different linear sequences of Frame Elements and their
syntactic realizations. Among these, we find a combination of Frame Ele-
ments and their syntactic realizations that is comparable to the English in
Table 4 above. For example, the Frame Element message may be realized
as an adverbial phrase functioning as an object (AVP.AO0j), a direct
object quotation phrase (QOQ.DO0j), or a direct object phrase headed
by que (QOQ.DOBj). Alternatively, it may not be realized syntactically,
and therefore be understood as a definite null instantiation (DNI) based
<table>
<thead>
<tr>
<th>Table 5. Partial Realization Table for the verb responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE Name</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Speaker</td>
</tr>
<tr>
<td>Message</td>
</tr>
<tr>
<td>Addresser</td>
</tr>
<tr>
<td>Depressive</td>
</tr>
<tr>
<td>Manner</td>
</tr>
<tr>
<td>Means</td>
</tr>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>Trigger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6. Excerpt from the Valence Table for responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>a. NP, Ext</td>
</tr>
<tr>
<td>b. NP, Ext</td>
</tr>
</tbody>
</table>

on the context. Because of space limitations, we cannot discuss here all 23 linear sequences of Frame Elements and their syntactic realizations. Instead, we focus on only the one linear sequence that corresponds to the English counterpart(s), namely sentence (a) in Table 4. Consider the excerpt from the valence table of responder in Table 6. Comparing Tables 4 and 6, we see that answer and responder exhibit comparable valence combinations with the Frame Elements speaker and message realized as the syntactic level, and the Frame Elements trigger and addresser not realized syntactically, but implicitly understood (they are both definite noun instantiations). Having identified corresponding semantic frames, lexical units, and their semantic and syntactic combinational possibilities, it is now possible to link the parallel English and Spanish lexicon fragments by establishing correspondence links between the parts of the entries of the two lexical units shown in Tables 3–6 via semantic frames. It is important to keep in mind that at this stage it is not yet possible to automatically connect lexical entries of the source and target languages. For example, although bilingual lexicon fragments might match in terms
of their syntactic and syntactic valences, they might differ in terms of
domain, frequency, connotation, and collocation in the two languages.
This means that one must carefully compare each individual part of the
valence table of a lexical unit in the source language with each individual
part of the valence table of a lexical unit in the target language.
This effort requires at the first stage a detailed comparison using bilingual
dictionaries and monolingual as well as parallel corpora in order to
ensure matching translation equivalents (cf. also Boas 2001, Teubert
2002, Fubaran and Petruck 2003, Ohara et al. 2004).64 Once the transla-
tion equivalents are identified, it is possible to link the parallel lexicon
fragments. As Figure 5 illustrates, the semantic frame serves as an inter-
lingual representation between the valence and realization tables of the
LUs in English and Spanish, thereby effectively establishing links between
translation equivalents (annotated corpus sentences are not included).

In Figure 5, answer and responder are indexed with 'a'. This index
points to the respective first lines in the valence tables of the two verbs
and identifies the two syntactic frames as being translation equivalents
of each other. At the top of the box in Figure 5 we see the verb answer
with one of its 22 linear sequences of Frame Elements, namely speaker,
trigger, message, and addressee (cf. Table 4 above). For this linear
sequence, Figure 5 shows one possible set of syntactic realizations of these
Frame Elements, that given in row (a) in Table 4 above. The 9a-designa-
tion following answer indicates that this lexicon fragment is the ninth lin-
cear configuration of Frame Elements out of a total of 22 linear sequences.
Of the ninth linear sequence of Frame Elements 'a' indicates that it is the
first of a list of various possible syntactic realizations of these Frame Ele-
ments (there are a total of four, cf. Table 4 above). As pointed out above,
speaker is realized syntactically as an external noun phrase, message as an
object noun phrase, and both trigger and addressee are null instan-
tiated. The bottom of Figure 5 shows responder with the first of the 17 lin-
ers.

16. An anonymous reviewer has pointed out that bilingual dictionaries may not
include all the necessary information. This suggests that in order to find
appropriate translation equi-sets it is necessary to rely on multiple resources
simultaneously (dictionaries, corpora, intuitions of bilingual speakers, etc.). At
the same time it is important to keep in mind that any of the individual re-
sources used for creating bilingual lexicon fragments may have particular
shortcomings (e.g. coverage).
car sequences of Frame Elements (recall that there are a total of 23 linear sequences). For one of these linear sequences, we see one subset of syntactic realizations of these Frame Elements, namely the first row catalogued by Spanish FrameNet for this configuration (see row (a) in Table 6).

We can now link the two independently existing partial lexical entries at the top and bottom of Figure 5 by indexing their specific semantic and syntactic configurations as equivalences within the Communication_Response frame. This linking is indicated by the arrows pointing from the top and the bottom of the partial lexical entries to the mid-section in Figure 5, which symbolizes the Communication_Response frame at the conceptual level, i.e. without any language-specific specifications. The linking of parallel lexicon fragments is achieved formally by employing Typed Feature Structures (Emmele 1994) that allow us to co-index the corresponding entries in a syntensized fashion (see, e.g. Heid and Krüger 1996).

It is important to keep in mind that the English and Spanish data discussed in this section represent only a very small set of the full lexical entries of answer and responder in the Communication_Response
frame. As such, these examples serve to illustrate how to systematically
link parallel English and Spanish FrameNet "fragments. 17 More specifi-
cally, in Figure 5 we have only looked at one possible syntactic realization
out of one set of Frame Elements in a specific linear order. For the same
order of Frame Elements there are four additional syntactic configurations
(cf. Tables 4 and 6 above). For each of these sets, similar entries are
needed in order to link them to each other. Recall that FrameNet provides
for the Communication Response frame a total of 22 linear
sequences of Frame Elements, totaling 32 different combinations in which
these sequences may be realized syntactically. In order to arrive at a com-
plete parallel lexicon fragment for answer and responder, it is necessary to
create entries for each of the 32 combinations of answer and subsequently
linking them to their corresponding Spanish counterparts. The same pro-
cess is applied to link other lexical units across multilingual FrameNets. 18
Clearly, the procedure outlined here appears to be very time intensive
as currently the translation equivalents for each Frame Element Configu-
ration (FEC) are largely determined manually, with the help of parallel
corpora and bilingual dictionaries. Demanding though this procedure
may be, it provides a solid basis for overcoming the types of linguistic
problems typically encountered in the creation of multilingual lexical data-
bases.

17. The current architecture of German FrameNet is based on identical (i.e.,
translation-equivalent) texts. Using multilingual corpora such as the Europarl
corpus (Koehn 2002), frame-evoking words are identified and subsequently
explored in monolingual corpora in order to determine the full range of their
uses. Then, other words in the same frame are explored (see Boas 2002). One
problem not addressed in this paper (and currently under investigation) con-
cerns translation mismatches where a single semantic frame or Frame Element
may not be sufficient as an interlingual representation to map from one lan-
guage to another language (see Section 2.3 for an example). Clearly, this is
an important issue that needs to be addressed in future work. FuceWordNet
(Yassen 2004) has developed a set of equivalence relations in combination
with an Inter-Lingual-Index (ILI) in order to address mismatches between
languages.

18. As this process is very time and labor intensive, efforts are currently under
way to arrive at different ways for extracting parallel lexicon fragments auto-
matically. A first step is to use parallel corpora to automatically identify trans-
lation equivalents in context in order to determine frame membership of
lexical units across languages. For approaches incorporating automatic acqui-
sition of lexical information from parallel corpora see Wu (2000), Farwell et
al. (2004), Green et al. (2004), and Mitamura et al. (2004).
Another important point to keep in mind is that in this paper semantic frames do not serve as a true interlingua in which a concept is realized independently of a source language. However, the model presented here is neither a purely transfer-based system, because semantic frames are understood as an independently existing conceptual system that is not tied to any particular language. At this early point, semantic frames have been developed primarily on the basis of English, so it may appear as if they can only be used to describe the semantics of English LUs and one or two other languages. However, this is not the case. Because at this point semantic frames are best characterized as entities that combine aspects of true interlinguas and of transfer-based systems, I am using the term 'interlingual representation.' Once more languages are described using the FrameNet approach we may arrive at true universal semantic frames (e.g. communication, motion, etc.), which may then serve as a true interlingua. The remaining culture-specific frames (e.g. calendric unit frame; see Petruck and Boas 2003) will then have to be modeled using a transfer-based approach (see also Meil'chuk and Wanner (2001: 28), who propose the inclusion of transfer-mechanisms for systems that utilize true interlinguas).

5.3. Advantages of MLLDs based on Frame Semantics

Applying frame semantic principles to the design of MLLDs overcomes a number of theoretical and practical issues outlined in Section 2. With regard to polysemy we have seen that assigning different senses of words to individual semantic frames allows us to capture their syntactic and semantic distribution in great detail. This step shifts issues surrounding polysemy from the level of words to the level of semantic frames and FEs. As such, it is not only possible to describe overlapping polysemy effectively, but also diverging polysemy.

<table>
<thead>
<tr>
<th>Table 7. Syntactic frames highlighting different parts of the Communication Statement frame (Boas 2002: 1370)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
For example, consider the Communication Statement frame, which describes situations such as the following: the Speaker produces a (spoken or written) message, the Addressee is the person to whom the message is communicated, the Message identifies the content of what the Speaker is communicating to the Addressee, the Medium is how the message is communicated, and the Topic is the subject matter to which the Message pertains. The verb announce is extremely flexible with respect to different types of perspectives it may take on a communication statement event.

Consider the examples in Table 1 discussed by Boas (2002). In each of the sentences, announce highlights different Frame Elements and their relations to each other. In German, each of the different uses of announce requires a different verb as a translation equivalent depending on the Frame Element Configuration and the type of perspective it takes on the communication statement scenario.

When announce occurs with only the Speaker and the Message frame elements, German prefers the use of bekanntgeben, bekanntmachen, ankündigen, and anzeigen, but not anzeigen and durchkagen.19 This is because the latter two verbs are primarily used in cases in which a Medium frame element represents some sort of (electronic) equipment used to communicate

| Table 8. Different syntactic frames of announce and corresponding German verbs |
|--------------------------|---------------------------------|--------------------------|
| 1 speaker TARGET message |
| NP,Ext announce.v NP,Obj |
| bekanntgeben, bekanntmachen, ankündigen, anzeigen |
| 2 medium TARGET message |
| NP,Ext announce.v Sfn,first Comp |
| bekanntgeben, ankündigen, anzeigen |
| 3 speaker TARGET medium |
| NP,Ext announce.v NP,Obj PP,over Comp |
| ankündigen, anzeigen, durchkagen |

19. In reality, a much finer-grained distinction (including contextual background information) is needed to formally distinguish between the semantics of individual verbs. E.g., anzeigen is used in a much more formal sense than the other verbs. In contrast, ankündigen is primarily used to refer to an event that will occur in the future (see Boas 2002).
the MESSAGE to the ADDRESSEE such as in the third sentence in Table 7. This demonstrates that it is not sufficient to simply generalize over senses of words that may be used as synonyms of each other. Instead, it is necessary for MLLDs to capture the full range of possible translation equivalents before arriving at decisions about which German verbs may serve as possible equivalents to a specific syntactic frame listed in an entry for an English lexical unit.\(^20\)

MLLDs based on frame semantical principles may also help with overcoming problems surrounding word sense disambiguation caused by analogous valence patterns. Our discussion of \textit{cure} and \textit{get} in Section 2 illustrated that the proper identification of verb senses occurring with multiple syntactic frames is often difficult. By detailing how different types of syntactic frames are used to express diverse semantic concepts represented by semantic frames it becomes possible to correctly identify a word sense not only within a single language, but also mapping that sense to appropriate translation equivalents across languages.\(^21\) For example, when \textit{cure} occurs with the [NP, V, NP] syntactic frame, it may express either the preservation sense (The mother cured the ham), or the healing sense (The mother cured the child), depending on the choice of semantic object. Explicitly stating the different semantics of the postverbal object and other constituents in frame semantic terms as part of the lexical entry not only allows us to disambiguate the two senses straightforwardly. It also enables us to identify the proper translation equivalent for other languages by

\(^{20}\) Note that it will not suffice to only map a lexical unit's equivalents to German. Instead, a MLLD based on frame semantic principles has to map each syntactic frame of a German lexical unit back to a syntactic frame of an English lexical unit in order to ensure that the two are capable of expressing the same semantic space. Whenever there are discrepancies, a revision of mappings between lexical entries will be necessary. This example illustrates that although parallel corpora may be helpful for the automatic acquisition of minimal lexicon fragments, it is still necessary to manually check the translation equivalents before finalizing any parallel lexicon fragments (see Boas 2001, 2003).

\(^{21}\) Syntactic frames alone are not sufficient for identifying the correct word sense. Instead, it is necessary to first determine the semantic types of the verb's arguments (using other lexical resources such as WordNet). Once we have information about the semantic types of the verb's arguments, it then becomes possible to link the syntactic frame to specific semantic frames, thereby correctly identifying word senses. For details about the linking of semantic and syntactic information for each of a word's multiple senses, see Goldberg (1995), Rappaport Hovav & Levin (1998), and Boas (2001).
using semantic frames to map the senses across languages. For German, we thus find *pikeln* for the preservation sense of *care*, and *heilen* for the healing sense of *care*.

Another advantage of employing semantic frames for the structuring of MLLDs is that knowledge about different lexicalization patterns can be accounted for systematically at the level of Frame Elements. The differences in lexicalization patterns between English and Japanese motion verbs discussed in Section 2.3 have shown that the two languages vary in the types of *PATH* Frame Elements. Whereas English exhibits only one general *PATH* FE, Japanese makes a more fine-grained distinction into *ROUTE* and *BOUNDARY* (cf. Ohara et al. 2004). To account for these differences, it is necessary to introduce the notion of Frame Element sub-categories that identify *ROUTE* and *BOUNDARY* as subtypes of the more general *PATH* FE. When mapping a *PATH* FE from English to Japanese it is thus important to rely on the valence patterns to determine the subtype of *PATH* FE for Japanese. For example, in English *the bridge and the river may appear as* a *PATH* FE with verbs such as *go, pass*, and *traverse*. As we have seen in Section 2.3, *wasure* ('go across') behaves similarly to English in that it may occur with *hani* ('the bridge') and *kawa* ('the river'). In contrast, *kore* ('go beyond') only occurs with *kawa*, but not with *hani*. In a frame-based MLLD this difference is accounted for in terms of lexical entries that specify for each lexical unit the different combinations of FEs with which it occurs. Using the mapping and numerical indexing mechanisms outlined in the previous section, we can then link English and Japanese lexicon fragments according to the equivalent Frame Element Configurations. It is at this level that the fine-grained differences between the *ROUTE* and *BOUNDARY* subcategories of Japanese path FEs and their English *PATH* counterpart are encoded.

6. Differences to other MLLDs

Frame-based MLLDs differ from other MLLDs in a number of significant ways. The first difference is in their overall architecture. For example, *EuroWordNet* (Peters et al. 1998; Vossen 2004) consists of individual databases for eight European languages structured along the original Princeton *WordNet* for English (Fellbaum 1998). As such, *EuroWordNet* relies on decontextualized concepts for lexical descriptions. The sense relations between semantically related words (synsets) such as hyponymy, antonymy, meronymy, etc. differ from semantic frames in that they repre-
sent ontological relations holding between synsets. These sense relations are internal to the conceptual architecture of EuroWordNet. In contrast, frame-based MLLDs are based on linguistically motivated concepts (semantic frames) that are external to the units of analysis. As such, frame-based MLLDs and MLLDs based on WordNet such as EuroWordNet offer complementary types of information.

The second difference between frame-based MLLDs and other MLLDs in the combination of syntactic and semantic information. Some lexical databases provide detailed conceptual ontologies representing hierarchies of different lexical relations. For example, SIMuLLDA (Jansen 2004) provides a fine-grained formal concept analysis for nouns in English and French. But it does not offer any significant information about their syntactic distribution such as different types of modification. EuroWordNet (Vossen 2001, 2004) offers a detailed semantic analysis of lexical semantic relations between synsets, but it only contains partial syntactic information in the form of one or two example sentences illustrating how a word is used in context. In contrast, other lexical resources such as SIMuLLDA and EuroWordNet differ from frame-based MLLDs in that they provide different types of conceptual information as well as access to ontological information which is not currently available in frame-based dictionaries. Moreover, WordNet and its multilingual counterpart EuroWordNet offer a much broader coverage than FrameNet and its multilingual extensions.

Another difference concerns the methodology used to create and link MLLDs. In EuroWordNet, each language-specific WordNet is an autonomous language-specific ontology where each language has its own set of concepts and lexical-semantic relations based on the lexicalization patterns of that language (cf. Vossen 2004). EuroWordNet differentiates between language specific and language-independent modules. The language-independent modules consist of a top concept ontology and an unstructured Inter-Lingual-index (ILI) that provides mappings among individual language WordNet structures and consists of a contented universal index of meaning (so far, 1024 fundamental concepts) (Vossen 2001, 2004). Each ILI record consists of a synset and an English gloss specifying its meaning and source. Although most concepts in each WordNet are

22. In EuroWordNet, there are no concepts for which there are not words or expressions in a language. In contrast, GermaNet (Hamp & Feldweg 1997, Kunze & Lemnitzer 2002), which is a spin-off from the German EuroWordNet consortium, uses non-lexicalized, so-called artificial concepts for creating well-balanced taxonomies.
ideally related to the closest concepts in the ILI, there is a set of equi-

lence relations that map between individual WordNets and the ILI (cf.

Identifying equivalents across languages with EuroWordNet requires

tree steps. First, one must identify the correct synset to which the sense

of a word belongs in the source language. Next, using an equivalence rela-
tion (e.g. EQ_HAS_HYPERONYM (when a meaning is more specific

than any available ILI record), vosen 2004: 164) the synset meaning is

mapped to the ILI (which is linked to a top-level ontology). Finally, the

corresponding counterpart is identified in the target language by mapping

from the ILI to a synset in the target language.

Frame-based MLLDds differ from the EuroWordNet architecture in

that all meanings are described directly with respect to the same semantic

shape. Differences between the languages are thus to be found in the vari-

ous ways in which the conceptual semantics of a frame are realized syntac-
tically. On this approach, semantic frames are only used to identify and

link meaning equivalents (Frame Elements). As we have seen in Section

5.2, the linking of the syntactic valence patterns is established by directly

identifying the translation equivalents (on the basis of parallel corpora)

and indexing them with each other.23 Differences between languages are

thus to be found in the various ways in which the conceptual semantics

of a frame are realized syntactically.

It is important to keep in mind that at this early stage FrameNet for

Spanish, German and Japanese are only linking their entries to existing

English FrameNet entries, but not to entries across all the languages. The

next step involves linking lexical entries across languages in order to test

the applicability of semantic frames as a cross-linguistic metalanguage.

Extending the FrameNet approach to different languages is in its prelimi-
nary stages. Clearly, much research on frame-based MLLDds remains to

be done. One of the open questions concerns the description and mapping

of adjectives and nouns across languages that differ in lexicalization pat-
terns. This question has already been addressed by other MLLDds such as

EuroWordNet. Another important issue concerns mismatches between

languages. That is, we need to carefully consider the different strategies
different strategies.

23. Our approach differs from Fontenelle’s (2000) analysis in that Fontenelle pri-

marily relies on data from existing bilingual dictionaries to establish parallel

lexicon fragments. Another difference is that Fontenelle augments his ap-

proach with additional semantic laws from Meilir’s Meaning-Text Theory

in order to establish lexical functions.
that should be employed when encountering translation mismatches.

Here, too, frame-based MLLDs may benefit from a variety of other re-
sources to solve these problems: the detailed conceptual information
contained in other resources such as EuroWordNet (Vossen 2004), in-
formation about complex translation mismatches provided by Acquiles
(Copestake et al. 1995), statistical information on translation matches
and mismatches provided by BIframeNet (Fung and Chez 2004), or para-
phrase relations as proposed by Mel'cuk's Meaning-Text Theory (Mel'cuk
et al. 1988; see also Fontenelle 2000).

7. Conclusions and outlook

This paper has outlined the methodology underlying the design and con-
struction of frame-based MLLDs. Starting with a discussion of the Berke-
ley FrameNet for English, I have shown how its semantic frames can be
systematically employed to create parallel lexicon fragments for Spanish,
Japanese, and German. In discussing the individual steps necessary for
the creation of multilingual FrameNets, I have demonstrated how the use
of semantic frames overcomes a number of linguistic problems tradition-
ally encountered in cross-linguistic analyses. These include diverging poly-
semic structures, lexicalization patterns, and identifying and measuring
paraphrase relations and translation equivalents.

At the center of the workflow in the creation of frame-based MLLDs
are the following three steps: (1) identification of translation equivalents
based on existing English FrameNet entries, parallel corpora, and bilin-
gual dictionaries; (2) attestation and semantic annotation of translation
equivalents based on examples in both parallel corpora and large mono-
lingual corpora; (3) creation of parallel lexical entries that are linked to
English FrameNet entries on the basis of semantic frames. Since not all
steps can be automated, this process is rather time and labor intensive.

The construction of frame-based MLLDs is only in its first phase. Clearly, future work will have to be extended to domains beyond those
discussed in this paper to achieve broader coverage (i.e. beyond the 8,900
Lexical Units currently offered by FrameNet). Other multi-lingual re-
sources such as EuroWordNet not only provide much broader coverage,
but also contain useful conceptual information not currently encoded by
FrameNet that may support this effort. Another important point will be to
determine the feasibility of a truly independent metalanguage based on
semantic frames for connecting multiple FrameNets. The idiosyncratic
syntactic realizations of Frame Elements in the communication domain.

discussed in this paper for English and Spanish has shown that this is not
an easy task. The fact that the large number of idiosyncratic valence pat-
terns of verbs may evoke the same frame (or only certain aspects of a
frame) suggests that it might be necessary to distinguish between truly uni-
versal frames and language-specific frames. The former would be modeled
by linking the syntactic valence patterns of a lexical unit directly to a
semantic frame. In this case semantic frames would serve as an interlingua
as outlined in Section 5.3 above. The latter would be modeled by employ-
ing transfer rules between language pairs where specific transfer rules
would have to specify how specific frames (or parts of frames) are mapped
from one language to another. However, at this point it is too early to
provide a definite answer to this problematic issue. It can only be ad-
dressed thoroughly once coverage has been extended significantly (both
in terms of Lexical Units and of languages analyzed).

Future efforts will have to concentrate on finding mechanisms that
allow for greater automation of the processes described in this paper, in
particular the identification of translation equivalents in parallel corpora.
Finally, it must be seen how multi-lingual FrameNets can be used to
improve current and future machine translation systems.

References

Asina, V. and J. DeCesars
2002 Bilingual lexicography, overlapping polyvalency, and corpus use.
In: B. Allenberg and S. Granger (eds.), Lexis in Contrast, 215–
230. Amsterdam/Philadelpia: Benjamins.

Allenberg, B. and S. Granger
2002 Recent trends in cross-linguistic lexical studies. In: B. Allenberg
and S. Granger (eds.), Lexis in Contrast, 3–50. Amsterdam/Phil-
adelphia: Benjamins.

Atkins, B.T.S.
1994 Analyzing the verbs of seeing A frame semantic approach to
corpus lexicography. In: C. Johnson et al. (eds.), Proceedings of
the Twentieth Annual Meeting of the Berkeley Linguistics Soci-

Atkins, B.T.S., N. Bel, F. Beriault, P. Boulton, N. Calabri, C. Feltbaum,
R. Grintman, A. Lenci, C. MacLeod, M. Palmer, G. Thurneis,
M. Villegas, and A. Zampolli
2002 From resources to applications. Designing the multilingual ISLE
Canaria, Spain.
Semantic frames as interlingual representations

Baker, C.F., C.J. Fillmore, and J.B. Lowe
1998 The Berkeley FrameNet Project. In: COLING-ACL’98: Proceed-
2 conferes of the Conference, 96–98.

Baker, C.F., C.J. Fillmore, and Z. Cronin
2001 The structure of the FrameNet Database. International Journal
3 of Lexicography 16, 281–296.

Björnstad, H

Boas, Hans C.
2001 Frame Semantics as a framework for describing polysemic and
8 syntactic structures of English and German motion verbs in con-
9 trasting computational lexicography. In: P. Rayson, A. Wilson,
10 T. McNerney, A. Hardie, and S. Khoja (eds.), Proceedings of Cor-
11 pur Linguistics 2001, 64–73.

Boas, Hans C.
2002 Bilingual FrameNet dictionaries for machine translation. In:
12 M. Gonzalez Rodriguez and C. Paz Suarez Araujo (eds.), Pro-
13 ceedings of the Third International Conference on Language Re-

Boas, Hans C.
2005 From theory to practice: Frame Semantics and the design of
16 FrameNet. In: S. Langer and D. Schmitzsch (eds.), Semanti-

Chierchia, A.
22 1998 Contrastive Functional Analysis. Amsterdam/Philadelphia: John
25 Benjamins.

Chodorowicz, C., D. Hourgaut, and J. Humbley
2002 Making a workable glossary out of a specialised corpus: Term
28 extraction and expert knowledge. In: B. Allenberg and S.
30 Graniger (eds.), Lexis in Context, 249–270. Amsterdam/Philad-
32 elphia: Benjamins.

Christ, O
29 1994 A modular and flexible architecture for an integrated corpus

Copestake, A., T. Briscoe, P. Voueux, A. Agno, I. Castelli, F. Ribas, G. Rigau,
36 H. Rodriguez, and A. Samoiltou
1995 Acquisition of lexical translation relations from MRDs. Machine
38 Translation 9, 183–219.

Cruse, A.

Eintein, M.
30 1994 TFS -- The typed feature structure representation formalism. In:
35 Proceedings of the International Workshop on Shareable Natural
36 Language Resources (SNL’R), Nara, Japan, 1994.

Erk, K., A. Kowalski, and S. Pad
2003 Towards a resource for lexical semantics: A large German cor-

Rappaport Hovav, M. and B. Levin

Sakla, R.

Sinclair, J.

Subirats, C. and M. Ortega

Subirats, C. and M. Petriuk

Swensén, B.

Talmy, L.

Talmy, L.

Teitscher, W.

Viberg, Å.

Vosman, P.

Vosman, P.
Vosse, P. 2004
 tunaWordnet: A multilingual database of autonomous and
 language specific wordnets connected via an inter-lingual-index.

Wu, D. 2000
 Bracketing and aligning words and constituents in parallel text
 using stochastic inversion transduction grammars. In: J. Veronis
 (ed.), *Parallel Text Processing: Alignment and Use of Translation